Mining Centralization The Bitcoin mining algorithm basically works by having miners compute SHA256 on slightly modified versions of the block header millions of times over and over again, until eventually one node comes up with a 190 version whose hash is less than the target (currently around 2 ). However, this mining algorithm is vulnerable to two forms of centralization. First, the mining ecosystem has come to be dominated by ASICs (application-specific integrated circuits), computer chips designed for, and therefore thousands of times more efficient at, the specific task of Bitcoin mining. This means that Bitcoin mining is no longer a highly decentralized and egalitarian pursuit, requiring millions of dollars of capital to effectively participate in. Second, most Bitcoin miners do not actually perform block validation locally; instead, they rely on a centralized mining pool to provide the block headers. This problem is arguably worse: as of the time of this writing, the top two mining pools indirectly control roughly 50% of processing power in the Bitcoin network, although this is mitigated by the fact that miners can switch to other mining pools if a pool or coalition attempts a 51% attack. The current intent at Ethereum is to use a mining algorithm based on randomly generating a unique hash function for every 1000 nonces, using a sufficiently broad range of computation to remove the benefit of specialized hardware. Such a strategy will certainly not reduce the gain of centralization to zero, but it does not need to. Note that each individual user, on their private laptop or desktop, can perform a certain quantity of mining activity almost for free, paying only electricity costs, but after the point of 100% CPU utilization of their computer additional mining will require them to pay for both electricity and hardware. ASIC mining companies need to pay for electricity and hardware starting from the first hash. Hence, if the centralization gain can be kept to below this ratio, (E + H) / E, then even if ASICs are made there will still be room for ordinary miners. Additionally, we intend to design the mining algorithm so that mining requires access to the entire blockchain, forcing miners to store the entire blockchain and at least be capable of verifying every transaction. This removes the need for centralized mining pools; although mining pools can still serve the legitimate role of evening out the randomness of reward distribution, this function can be served equally well by peer-to-peer pools with no central control. It additionally helps fight centralization, by increasing the number of full nodes in the network so that the network remains reasonably decentralized even if most ordinary users prefer light clients. Page 32 ethereum.org

Ethereum White Paper by Vitalik Buterin - Page 36 Ethereum White Paper by Vitalik Buterin Page 35 Page 37